利用CAM软件发挥机床的最大潜力
详细内容
凡是在cam软件能够充分利用机床功能的地方,应该能够识别特殊的项目,以此给用户带来利益,并最大程度地开发和发挥铣床的潜力。
撰写本文的目的是为了超越一般性的论述,并区分出特殊的项目,通过cam软件利用机床的各种功能给用户带来更多的利益。
cam系统对您后处理器的认知达到了怎样的程度?许多cam软件可用于生成刀具路径的工艺数据和编写中性格式的输出文件,例如aptcl数据。然后通过一个外部的后处理器程序,将中性数据转换成机床专用格式,其焦点集中在机床的动态特性和控制系统信息上。当然,这种传统的工艺已经成功地在实际中得到了应用。然而,刀具路径计划与后处理步骤之间的脱节,意味着后处理器无法接近机床功能的某些信息。同样,cam程序往往是与目标机床的具体细节互相分离的。在多轴应用领域中,采用集成后处理器技术的好处是:能够使其在多轴应用领域中更加生动。
图2采用多轴分度方法生产的锻件,可采用硬态铣削加工
5轴加工
在5轴加工中心中,可明显地找到它们的某些不同特性。它们之间的区别非常明显,例如动力布局,无论旋转轴是否带有刀具;无论旋转轴是如何设计到机床之中的,无论各轴之间是否相互垂直或呈现不同的角度。
5轴加工确实是一种强有力的加工方法,对改善工具、减少工件的调试装卡次数和提高表面质量有很大的好处,并允许刀具接近复杂的几何形状。但从处理大质量(如机床和零件)时的复杂动力学原理角度来看,采用全5轴模拟解决方案并不能很理想地适用于每个应用领域。
4+1加工工艺
在许多模具应用领域中,用户可以通过寻求固定支撑轴,并积极利用旋转轴的新解决方案来获得5轴加工在工装和调试中的更高效能。这种工艺称为4+1加工工艺。除了提高机床的动态性能之外,一般来说,这种工艺也充分利用了机床上旋转轴(c轴)的较高性能优势。
模具元件常常带有小半径的特点,从而能够生产出带有圆角和边缘的成品零件。从经验来看,这些特点是由附加的edm工艺造成的。今天,这些特点往往采用5轴机床加工。生成这些特点所要求的小直径刀具达到的效果,是采用延伸长度较长的长刀具所不可能达到的。对于小直径刀具,如果其长度较短并带有较粗的锥度轴,那么其加工性能就能得到进一步的改善。一般来说,使用5轴加工能够适应和满足粗轴加工工具的需要。