2015高考文科数学第七章立体几何一轮复习题有解析
详细内容
05限时规范特训
A级 基础达标
1.[2014•宁德质检]如图是正方体截去阴影部分所得的几何体,则该几何体的侧视图是( )
解析:此几何体侧视图是从左边向右边看,故C符合题意.
答案:C
2.[2014•济宁模拟]下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是( )
A.①② B.①③
C.③④ D.②④
解析:图①的三种视图均相同;图②的正视图与侧视图相同;图③的三种视图均不相同;图④的正视图与侧视图相同.故选D.
答案:D
3.[2014•沈阳三模]一个锥体的主(正)视图和左(侧)视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )
解析:俯视图是选项C的锥体的正视图不可能是直角三角形.另外直观图如图1的三棱锥(OP⊥面OEF,OE⊥EF,OP=OE=EF=1)的俯视图是选项A,直观图如图2的三棱锥(其中OP,OE,OF两两垂直,且长度都是1)的俯视图是选项B,直观图如图3的四棱锥(其中OP⊥平面OEGF,底面是边长为1的正方形,OP=1)的俯视图是选项D.
答案:C
4.[2014•河北质检]在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )
解析:由题目所给的几何体的正视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示,可知左视图为等腰三角形,且轮廓线为实线,故选D.
答案:D
5.如图所示,正方形O′A′B′C′的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是( )
A.6 B.8
C.2+32 D.2+23
解析:如图,OB=22,OA=1,则AB=3.
∴周长为8.
答案:B
6.[2014•上饶模拟]某几何体的三视图如图所示,且该几何体的体积是2,则正(主)视图的面积等于( )
A.2 B.92
C.32 D.3
解析:由三视图可知该几何体是一个四棱锥,其底面积就是俯视图的面积S=12(1+2)×2=3,其高就是正(主)视图以及侧(左)视图的高x,因此有13×3×x=2,解得x=2,于是正(主)视图的面积S=12×2×2=2.
答案:A
7.已知某几何体的三视图如图所示,其中正(主)视图中半圆的半径为1,则该几何体的体积为( )
A.24-3π2 B.24-π3
C.24-π D.24-π2
解析:本题主要考查由三视图还原几何体并且求几何体的体积,意在考查考生的空间想象能力以及运算求解能力.由三视图知该几何体是一个长方体截去一个半圆柱,长方体的长,宽,高分别是4,3,2,∴长方体的体积是4×3×2=24,截去的半圆柱的底面圆的半径是1,高是3,∴半圆柱的体积是12×π×1×3=3π2,∴所求的几何体的体积是24-3π2,故选A.
答案:A
8.[2014•金版原创]一个几何体的三视图如图所示,则这个几何体的外接球的体积为________.
解析:几何体外接球的直径为四棱锥底面的对角线2,球体积V=43π(22)3.
答案:2π3
9.如图,一个封闭的三棱柱容器中盛有水,且侧棱长AA1=8.若侧面AA1B1B水平放置时,液面恰好经过AC,BC,A1C1,B1C1的中点. 当底面ABC水平放置时,液面高度为________.
解析:利用水的体积相等建立方程求解.图中水的体积是34S△ABC×8=6S△ABC,当底面ABC水平放置时,水的体积不变,设液面高度为h,则6S△ABC=S△ABCh,解得h=6,即液面高度为6.
答案:6
10.如图,点O为正方体ABCD-A′B′C′D′的中心,点E为平面B′B′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的面上的正投影可能是________(写出所有可能的图的序号).
解析:图①为空间四边形D′OEF在前面(或后面)上的投影.图②为空间四边形D′OEF在左面(或右面)上的投影.图③为空间四边形D′OEF在上面(或下面)上的投影.图④不可能.
答案:①②③
11.[2014•唐山检测]如图,在斜二测画法下,四边形A′B′C′D′是下底角为45°的等腰梯形,其下底长为5,一腰长为2,则原四边形的面积是多少?
解:如图(1)作D′E′⊥A′B′于E′,
C′F′⊥A′B′于F′,
则A′E′=B′F′=A′D′cos45°=1,
∴C′D′=E′F′=3.
将原图复原(如图(2)),则原四边形应为直角梯形,∠A=90°,AB=5,CD=3,AD=22,
∴S四边形ABCD=12×(5+3)×22=82.
12.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.
(1)求该几何体的体积V;
(2)求该几何体的侧面积S.
解:本题考查由三视图求几何体的侧面积和体积,由正视图和侧视图的三角形结合俯视图可知该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥,如图.
(1)V=13×(8×6)×4=64.
(2)四棱锥的两个侧面VAD、VBC是全等的等腰三角形,取BC的中点E,连接OE,VE,则△VOE为直角三角形,VE为△VBC边上的高,VE=VO2+OE2=42.
同理侧面VAB、VCD也是全等的等腰三角形,
AB边上的高h=42+622=5.
∴S侧=2×(12×6×42+12×8×5)=40+242.
B级 知能提升
1.[2014•揭阳模拟]一个正方体截去两个角后所得几何体的正视图、侧视图如图所示,则其俯视图为( )
解析:依题意可知该几何体的直观图如图所示,故其俯视图应为C.
答案:C
2.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )
A.4+π33 B.(4+π)3
C.8+π32 D.8+π36
解析:由三视图可得,该几何体由一个半圆锥和一个四棱锥组成,半圆锥的底面半径为1,侧视图是一个边长为2的等边三角形,故圆锥的高为3,则此半圆锥的体积为13×12×π×1×3=3π6,四棱锥的体积为13×2×2×3=433,这个几何体的体积为433+3π6=8+π36.
答案:D
3.一个几何体的三视图如图所示,若该几何体的表面积为92,则h=________.
解析:由三视图可知该几何体是一个底面是直角梯形的直四棱柱,几何体的表面积S=2+5×42×2+(2+4+5+32+42)h=92,即16h=64,解得h=4.
答案:4
4.已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.
(1)画出该三棱锥的直观图;
(2)求出侧视图的面积.
解:(1)三棱锥的直观图如图所示.
(2)根据三视图间的关系可得BC=23,
∴侧视图中VA=42-23×32×232
=12=23,∴S△VBC=12×23×23=6.
