汉语大全>电子通信论文>一种多信号采集功能的信号调理电路设计(一)

一种多信号采集功能的信号调理电路设计(一)

详细内容

  【摘要】:在不改变硬件情况下,采用一种新的设计方法, 使用软件进行简单的设定, 通过单片机完成对光继电器的控制及数字电位器的调节,从而实现对不同信号的采集的功能。
  
  【关键词】:单片机;数字电位器; 信号调理电路
    
  在实际生产中往往需要对多种物理信号进行检测以便实现计量和控制, 针对不同的信号往往需要不同的采集电路, 这样一来在设计、安装与调试方面就存在很多不便之处。本文提出一种通用的可对多种信号进行采集的信号调理电路。若将此电路应用于仪器仪表中, 则不必开箱, 只需通过软件设定即可接收工业现场常见的各种信号, 并可同时对八个通道模拟量进行采样记录, 各个通道完全隔离。
  
  1、硬件设计
  
  信号调理电路单路输入的硬件结构,包括信号输入、放大、单片机控制等几大部分。信号输入电路由精密基准电源MAX872、光继电器AQW212E、运放4502 及精密仪表开关电容模块LTC1043 等组成。其中精密基准电源的使用一方面提升输入信号的电位, 避免低电位测量时的干扰误差;另一方面作为一路检测电路, 其测量结果可以修正其它回路的检测结果, 实现系统的在线自校正。MAX872 具有较宽的电压输入范围(2.7~20V),输出精度可达2.500V ± 0.2%。LTC1043 是双精密仪表开关电容,电容外接, 多用于精密仪表放大电路、压频转换电路和采样保持电路等。当内部开关频率被设定在额定值300Hz时, LTC1043 的传输精确度最高, 此时电容器CS 和CH大小均为1 μ F。LTC1043 和运放LT1013 组成差分单端放大器,采用LTC1043为差分输入的电压采样值, 电压保持在电容器CS上并送到接地参考电容器CH 中, 而CH 的电压送到LT1013 的非反相输入端放大。LTC1043是通过电容完成电压的传输, 使电压由差分输入变为单端输入, 并起到了很好的信号隔离作用, 在本设计中双电容的巧妙接法解决了热电阻的三线制输入问题。
  放大电路由运放L T 1 0 1 3 和数字电位器X9241M 组成, 放大增益由数字电位器X9241 中三个数字电位器决定, 使输入信号经过放大后均变为0~500mV的电压信号, 满足模数转换器允许的电压输入范围。本部分电路仅完成信号输入, 是我们研制网络化智能仪表的一部分, 对于输入信号模数转换、数据处理、显示则由其它模块完成。S4、S5、S6 是控制一路输入的光继电器, 采集该路信号时同时合上, 其他电路是所有通道信号输入的公共电路, 只是根据输入信号的不同, 单片机改变其余光继电器的状态, 形成不同的输入电路。具体可分为以下几种情况:
  (1) 采集1~5V 电压信号时: 继电器CH 合上,P11、SI、P37 断开, 通过电阻R2、R4 实现分压后变为0.25~1.25V的电压信号加在数字电位器X9241的0号电位器V0的两端, 经过软件实现对该电位器的调节, 令其滑动端的数值为25, 按25J63(电位器内共有63个电阻单元组成的阵列)这样比例继续分压变为约100~500mV信号, 加LTC1043 的电容CS 上,此时数字电位器X9241的其它3个电位器形成的放大倍数应为1, 才能保证在运放L T 1 0 1 3 的输出端最大电压不超过500mV; 具体如何设置这3个电位器滑动端的数值见后面软件部分。

  (2) 采集热电阻信号时: 继电器SI、P11合上,CH、P37 断开。热电阻采用的是三线制接法,消除了长距离传输时传输导线的电阻带来的误差。采集过来的电阻值接在IN1、IN2 两端,IN2、IN3被三线制接法后短接,2.5V基准电压此时加在热电阻及R8、R9 上,变为毫伏级电压信号输入。当为Pt100输入390.26Ω时转换为约290mV左右的电压输出。
  (3) 采集每个通道信号前还要采集两个不同的基准电压, 实现仪表在测量中的自校正功能。电路中精密基准电源MAX872 输出的2.5V 电压经精密电阻R1(66kΩ)、R3(192kΩ)分压后,将约为640mV 左右加在X9241 的0 号电位器分压。此时继电器S4、S5、S6 断开,继电器P37 合上。