长周期光栅机理与写入方法及实际应用(一)
详细内容
摘 要:对长周期光栅(long period fiber grating,LPFG)的形成机理和研究方法进行了分析,给出了研究的内容和参数以及这些参数与光栅周期、周期数、有效折射率的关系;研究并列举了当今先进的光栅写入方法,通过性能比较,得出了相关结论。经过搜集和研究给出了长周期光纤光栅在现代传感器和光纤通信中的最新应用进展。?
关键词:光栅;光纤通信;写入方法;传感器?
0 引言?
当今,随着科技的进步和社会信息化需要,通信技术以前所未有的速度快速发展。以高速率、超宽带,远距离、大容量、不受电磁干扰为显著特征的光纤通信技术的进步尤为突出。而光纤光栅是指通过光纤的光敏性,采取驻波法等,用不同波长的光源照射掺锗、硼的光纤,或用物理化学方法使光纤的反射和折射发生永改变而形成的特殊光纤。光纤光栅在光纤通信和光纤传感器、光计算、光信息处理等领域有着广泛的应用,极大的推动了全光网络和数字神经系统的建立和发展。光纤光栅又分短周期光纤光栅和长周期光纤光栅。本文主要介绍长周期光纤光栅的机理和写入方法及其应用。?
1 长周期光纤光栅的机理及研究?
光纤具有光敏性,光敏性是指当光纤纤芯受到特定波长和高于一定强度的激光照射时,折射率会发生永久性变化。光纤的光敏性主要取决于纤芯的制作材料及照射激光的波长和强度。显然,利用光敏性可以改变光波导结构的折射率,这一特点可以用来制作无源光器件。光纤光栅就是其重要的应用。?
长周期光纤光栅是指周期为几十到几百微米的能够实现同向模式间耦合的光纤光栅。长周期光栅的特点是同向传输的纤芯模和高层模之间的耦合,无反向反射,属于透射型带阻滤波器。所以,长周期光纤光栅常常也称为透射光栅。?
长周期光纤光栅理论主要来源于光纤布拉格光栅,研究模型有多种,其中最具典型的是耦合模理论。研究的关键点主要有:光纤光栅的导模、包层模和辐射模之间的模式耦合及传输特性。研究的内容和参数包括:光纤光栅的谐振波长、损耗峰值、带宽、耦合系数、传播常数等以及这些参数与光栅周期、周期数、有效折射率的关系。?
1996年AT&T贝尔实验室的A.M.Vengsarkar等人用紫外光通过振幅掩模板照射氢载硅、锗光纤获得成功,从而诞生了长周期光栅光纤。?
2 长周期光纤光栅的写入方法?
长周期光纤光栅写入方法很多,主要有:紫外光法,电弧放电法,离子束入射法,CO2激光法,腐蚀刻槽法,机械微弯变形法等。其各有优缺点。下面仅以主要的几种方法说明写入的原理和过程。?
2.1 紫外光写入法?
这种写入方法的原理是:用紫外光通过振动模板曝光氢载掺锗光纤,使得掺锗光纤的光敏性引起纤芯折射率的周期性调制,如图1所示。?
图1 倾斜振幅掩模板写入不同周期的长周期光纤光栅
通过改变掩模板缝隙的周期,还可以写入不同谐振波长的长周期光纤光栅,以满足实际应用需求。图1中,通过改变模板与光纤之间的夹角f,就可改变光栅周期fb。?
此种方法的缺点是热稳定性较差。常可用退火法来提高光栅的热稳定性。?
2.2 腐蚀刻槽法?
腐蚀刻槽法是直接利用氢氟酸周期性腐光纤形成周期性的环槽结构,从而形成长周期光纤光栅。如图2所示。?
图2 腐蚀刻槽法写入的长周期光纤光栅示意图
此种方法形成的光纤光栅其折射率变化不仅发生在纤芯,而且在包层也起了很大改变。同时,由于光纤内部腐蚀部分和未腐蚀部分的直径不同,在对光栅施加一定压力后将引起折射率的变化,由此,此种长周期光纤光栅可以应用在应力、弯曲、扭曲、温度等传感器中。?
2.3 离子束入射法?
离子束入射法是用氢(H+)或氦(He+)离子束沿轴向周期性入射到光纤表面并注入到包层和纤芯,使其折射率发生周期性改变,形成长周期光纤光栅。其写入方法如图3所示。?
图3 离子束入射法写入长周期光纤光栅的示意
该光纤光栅的优点:室温下,常规光纤可形成长周期光纤光栅;通过调节入射粒子束的剂量来实现对光纤折射率调制大小的控制;高温稳定性好,适应高温环境下工作。?
3 长周期光纤光栅在实际中的应用?
LPFG的周期相对较长,满足相位匹配条件的是同向传输的纤芯模和包层模。这就导致了LPFG的谐振波表和幅值对外界环境的变化非常敏感,具有更好的温度、应变、弯曲,扭曲、横向负载、浓度和折射率灵敏度;另一方面,LPFG的滤波等特性在光纤通信中具有重要地位和价值。下面给出目前LPFG在传感器和通信领域的最新的应用成果。?