2014年中考数学频数与频率试题汇编
详细内容
频数与频率
一、选择题
1. ( 2014•安徽省,第5题4分)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为( )
棉花纤维长度x频数
0≤x<81
8≤x<162
16≤x<248
24≤x<32 6
32≤x<403
A. 0.8B.0.7C.0.4D.0.2
考点:频数(率)分布表.
分析:求得在8≤x<32这个范围的频数,根据频率的计算公式即可求解.
解答:解:在8≤x<32这个范围的频数是:2+8+6=16,
则在8≤x<32这个范围的频率是: =0.8.
故选A.
点评:本题考查了频数分布表,用到的知识点是:频率=频数÷总数.
二.填空题
1.(2014年四川资阳,第12题3分)某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为 120 人.
考点:扇形统计图.
分析:用学校总人数乘以教师所占的百分比,计算即可得解.
解答:解:1500×(1?48%?44%)
=1500×8%
=120.
故答案为:120.
点评:本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
2.(2014年山东泰安,第22题4分)七(一)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据整理如下表(部分):
月均用水量x/m30<x≤55<x≤1010<x≤1515<x≤20x>20
频数/户12203
频率0.120.07
若该小区有800户家庭,据此估计该小区月均用水量不超过10m3的家庭约有 户.
分析:根据 =总数之间的关系求出5<x≤10的频数,再用整体×样本的百分比即可得出答案.
解:根据题意得: =100(户),15<x≤20的频数是0.07×100=7(户),
5<x≤10的频数是:100?12?20?7?3=58(户),
则该小区月均用水量不超过10m3的家庭约有 ×800=560(户);故答案为:560.
点评:此题考查了用样本估计总体和频数、频率、总数之间的关系,掌握 =总数和样本估计整体让整体×样本的百分比是本题的关键.
三.解答题
1.(2014•毕节地区,第24题12分)我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修易门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).
(1)请你求出该班的总人数,并补全频数分布直方图;
(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.
考点:频数(率)分布直方图;扇形统计图;列表法与树状图法.
分析:(1)根据C类有12人,占24%,据此即可求得总人数,然后利用总人数乘以对应的比例即可求得E类的人数;
(2)利用列举法即可求解.
解答:解:(1)该班总人数是:12÷24%=50(人),
则E类人数是:50×10%=5(人),
A类人数为:50?(7+12+9+5)=17(人).
补全频数分布直方图如下:
;
(2)画树状图如下:
,
或列表如下:
共有12种等可能的情况,恰好1人选修篮球,1人选修足球的有4种,
则概率是: = .
点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
2.(2014•孝感,第21题10分)为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:
(1)本次抽样测试的学生人数是 40 ;
(2)图1中∠α的度数是 54° ,并把图2条形统计图补充完整;
(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为 700 .
(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.
考点:条形统计图;用样本估计总体;扇形统计图;列表法与树状图法.
分析:(1)用B级的人数除以所占的百分比求出总人数;
(2)用360°乘以A级所占的百分比求出∠α的度数,再用总人数减去A、B、D级的人数,求出C级的人数,从而补全统计图;
(3)用九年级所有得学生数乘以不及格的人数所占的百分比,求出不及格的人数;
(4)根据题意画出树状图,再根据概率公式进行计算即可.
解答:解:(1)本次抽样测试的学生人数是: =40(人),
故答案为:40;
(2)根据题意得:
360°× =54°,
答:图1中∠α的度数是54°;
C级的人数是:40?6?12?8=14(人),
如图:
故答案为:54°;
(3)根据题意得:
3500× =700(人),
答:不及格的人数为700人.
故答案为:700;
(4)根据题意画树形图如下:
共有12种情况,选中小明的有6种,
则P(选中小明)= = .
点评:此题考查了条形统计图和扇形统计图的综合应用,用到的知识点是用样本估计总体、频数、频率、总数之间的关系等,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.