2014年中考数学综合性问题试题汇编
详细内容
综合性问题
一、选择题
1. ( 2014•安徽省,第8题4分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )
A. B. C.4D.5
考点:翻折变换(折叠问题).
分析:设BN=x,则由折叠的性质可得DN=AN=9?x,根据中点的定义可得BD=3,在Rt△ABC中,根据勾股定理可得关于x的方程,解方程即可求解.
解答:解:设BN=x,由折叠的性质可得DN=AN=9?x,
∵D是BC的中点,
∴BD=3,
在Rt△ABC中,x2+32=(9?x)2,
解得x=4.
故线段BN的长为4.
故选:C.
点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.
2. ( 2014•福建泉州,第7题3分)在同一平面直角坐标系中,函数y=mx+m与y= (m≠0)的图象可能是( )
A. B. C. D.
考点:反比例函数的图象;一次函数的图象.
分析:先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.
解答:解:A、由函数y=mx+m的图象可知m>0,由函数y= 的图象可知m>0,故本选项正确;
B、由函数y=mx+m的图象可知m<0,由函数y= 的图象可知m>0,相矛盾,故本选项错误;
C、由函数y=mx+m的图象y随x的增大而减小,则m<0,而该直线与y轴交于正半轴,则m>0,相矛盾,故本选项错误;
D、由函数y=mx+m的图象y随x的增大而增大,则m>0,而该直线与y轴交于负半轴,则m<0,相矛盾,故本选项错误;
故选:A.
点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.
3. (2014•广西贺州,第10题3分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+ 与反比例函数y= 在同一坐标系内的大致图象是( )
A. B. C. D.
考点:二次函数的图象;一次函数的图象;反比例函数的图象.
分析:先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.
解答:解:∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴为直线x=? >0,
∴b<0,
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∴一次函数y=cx+ 的图象过第二、三、四象限,反比例函数y= 分布在第二、四象限.
故选B.
点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=? ;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.
4.(2014•襄阳,第12题3分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE= AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是( )
A.①②B.②③C.①③D.①④
考点:翻折变换(折叠问题);矩形的性质
分析:求出BE=2AE,根据翻折的性质可得PE=BE,再根据直角三角形30°角所对的直角边等于斜边的一半求出∠APE=30°,然后求出∠AEP=60°,再根据翻折的性质求出∠BEF=60°,根据直角三角形两锐角互余求出∠EFB=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得EF=2BE,判断出①正确;利用30°角的正切值求出PF= PE,判断出②错误;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判断出③错误;求出∠PBF=∠PFB=60°,然后得到△PBF是等边三角形,判断出④正确.
解答:解:∵AE= AB,
∴BE=2AE,
由翻折的性质得,PE=BE,
∴∠APE=30°,
∴∠AEP=90°?30°=60°,
∴∠BEF= (180°?∠AEP)= (180°?60°)=60°,
∴∠EFB=90°?60°=30°,
∴EF=2BE,故①正确;
∵BE=PE,
∴EF=2PE,
∵EF>PF,
∴PF>2PE,故②错误;
由翻折可知EF⊥PB,
∴∠EBQ=∠EFB=30°,
∴BE=2EQ,EF=2BE,
∴FQ=3EQ,故③错误;
由翻折的性质,∠EFB=∠BFP=30°,
∴∠BFP=30°+30°=60°,
∵∠PBF=90°?∠EBQ=90°?30°=60°,
∴∠PBF=∠PFB=60°,
∴△PBF是等边三角形,故④正确;
综上所述,结论正确的是①④.
故选D.
点评:本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等边三角形的判定,熟记各性质并准确识图是解题的关键.
5.(2014•呼和浩特,第16题3分)以下四个命题:
①每一条对角线都平分一组对角的平行四边形是菱形.
②当m>0时,y=?mx+1与y= 两个函数都是y随着x的增大而减小.
③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(1, ,则D点坐标为(1, .
④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为 .
其中正确的命题有 ① (只需填正确命题的序号)
考点:命题与定理.
分析:利用菱形的性质、一次函数及反比例函数的性质、图形与坐标及概率的知识分别判断后即可确定答案.
解答:解:①每一条对角线都平分一组对角的平行四边形是菱形,正确.
②当m>0时,y=?mx+1与y= 两个函数都是y随着x的增大而减小,错误.
③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(1, ,则D点坐标为(1, ,错误.
④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为 ,错误,
故答案为:①.
点评:本题考查了命题与定理的知识,解题的关键是了解菱形的性质、一次函数及反比例函数的性质、图形与坐标及概率的知识,难度一般.
6.(3分)(2014•德州,第10题3分)下列命题中,真命题是( )
A.若a>b,则c?a<c?b
B.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖
C.点M(x1,y1),点N(x2,y2)都在反比例函数y= 的图象上,若x1<x2,则y1>y2
D.甲、乙两射击运动员分别射击10次,他们射击成绩的方差分别为S =4,S =9,这过程中乙发挥比甲更稳定
考点:命题与定理
专题:常规题型.
分析:根据不等式的性质对A进行判断;
根据概率的意义对B进行判断;
根据反比例函数的性质对C进行判断;
根据方差的意义对D进行判断.
解答:解:A、当a>b,则?a<?b,所以c?a<c?b,所以A选项正确;
B、某种彩票中奖的概率是1%,买100张该种彩票不一定会中奖,所以B选项错误;
C、点M(x1,y1),点N(x2,y2)都在反比例函数y= 的图象上,若0<x1<x2,则y1>y2,所以C选项错误;
D、甲、乙两射击运动员分别射击10次,他们射击成绩的方差分别为S =4,S =9,这过程中甲发挥比乙更稳定,所以D选项错误.
故选A.
点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.